Reconfigurable Antenna Multiple Access for 5G mmWave Systems
نویسندگان
چکیده
This paper aims to realize a new multiple access technique based on recently proposed millimeter-wave reconfigurable antenna architectures. To this end, first we show that integration of the existing reconfigurable antenna systems with the well-known non-orthogonal multiple access (NOMA) technique causes a significant degradation in sum rate due to the inevitable power division in reconfigurable antennas. To circumvent this fundamental limit, a new multiple access technique is proposed. The technique which is called reconfigurable antenna multiple access (RAMA) transmits only each user’s intended signal at the same time/frequency/code, which makes RAMA an inter-user interference-free technique. Two different cases are considered, i.e., RAMA with partial and full channel state information (CSI). In the first case, CSI is not required and only the direction of arrival for a specific user is used. Our analytical results indicate that with partial CSI and for symmetric channels, RAMA outperforms NOMA in terms of sum rate. Further, the analytical result indicates that RAMA for asymmetric channels achieves better sum rate than NOMA when less power is assigned to users that experience better channel quality. In the second case, RAMA with full CSI allocates optimal power to each user which leads to higher achievable rates compared to NOMA for both symmetric and asymmetric channels. The numerical computations demonstrate the analytical findings.
منابع مشابه
A New Reconfigurable Antenna MIMO Architecture for mmWave Communication
The large spectrum available in the millimeterWave (mmWave) band has emerged as a promising solution for meeting the huge capacity requirements of the 5th generation (5G) wireless networks. However, to fully harness the potential of mmWave communications, obstacles such as severe path loss, channel sparsity and hardware complexity should be overcome. In this paper, we introduce a generalized re...
متن کاملMillimeter-Wave Communication with Non-Orthogonal Multiple Access for 5G
To further improve the system capacity for 5G, we explore the integration of non-orthogonal multiple access (NOMA) in mmWave communications (mmWave-NOMA) for future 5G systems. Compared with the conventional NOMA, the distinguishing feature of mmWave-NOMA is that, it is usually characterized by transmit/receive beamforming with large antenna arrays. In this paper, we focus on the design challen...
متن کاملRF Lens-Embedded Antenna Array for mmWave MIMO: Design and Performance
The requirement of high data-rate in the fifth generation wireless systems (5G) calls for the ultimate utilization of the wide bandwidth in the mmWave frequency band. Researchers seeking to compensate for mmWave's high path loss and to achieve both gain and directivity have proposed that mmWave multiple-input multiple-output (MIMO) systems make use of beamforming systems. Hybrid beamforming in ...
متن کاملAgile Millimeter Wave Networks with Provable Guarantees
There is much interest in integrating millimeter wave radios (mmWave) into wireless LANs and 5G cellular networks to benefit from their multiple GHz of available spectrum. Yet unlike existing technologies, e.g., WiFi, mmWave radios require highly directional antennas. Since the antennas have pencil-beams, the transmitter and receiver need to align their antenna beams before they can communicate...
متن کاملA Survey of Millimeter Wave (mmWave) Communications for 5G: Opportunities and Challenges
With the explosive growth of mobile data demand, the fifth generation (5G) mobile network would exploit the enormous amount of spectrum in the millimeter wave (mmWave) bands to greatly increase communication capacity. There are fundamental differences between mmWave communications and existing other communication systems, in terms of high propagation loss, directivity, and sensitivity to blocka...
متن کامل